
Page 1 of 23 Version 0.1

The Remote Disk Protocol Guide

Bob Applegate

Corsham Technologies, LLC

bob@corshamtech.com

Draft Version 0.1
Last edit date: 8/2/2015 3:31:00 PM

Last edit by: Bob Applegate

Page 2 of 23 Version 0.1

Table of Contents

Table of Contents .. 2

Revision History .. 3

Introduction ... 4

Copyrights .. 4

Terminology ... 4

Overview .. 6

Parallel Interface... 7

Commands/Responses Sorted by Numeric Value... 8

Commands/Responses Sorted by Function .. 10
Misc .. 10
Mounting/Unmounting DSK Format Files .. 10
Working with FAT Files .. 10
Working with Mounted Files .. 10
Time/Date ... 11

Common Values .. 12
Drive .. 12
Sector Size ... 12
Error Codes .. 12

Details of Commands/Responses .. 14
GET_VERSION .. 14
VERSION_INFO .. 14
PING... 14
PONG ... 14
LED_CONTROL .. 15
DONE/ABORT ... 15
READ_SECTOR .. 16
WRITE_SECTOR .. 16
ACK .. 17
NAK .. 17
SECTOR_DATA .. 17
GET_DIRECTORY .. 18
DIRECTORY_ENTRY .. 18
DIRECTORY_END ... 18
READ_FILE .. 19
READ_BYTES .. 19
FILE_DATA .. 19
WRITE_FILE ... 20
WRITE_BYTES ... 20
GET_DRIVE_STATUS ... 20
DRIVE_STATUS ... 21
GET_MOUNTED LIST .. 21
MOUNT_INFO .. 21

Page 3 of 23 Version 0.1

FILE_MOUNT ... 22
FILE_UNMOUNT ... 22
GET_CLOCK .. 22
CLOCK_DATA ... 22
SET_CLOCK ... 23

Revision History

Revision Date Author Changes

0.0 Early 2015 Bob Applegate Initial beta release

0.1 July 2015 Bob Applegate Added/refined the clock
related commands and
responses. Removed FORMAT
and added new commands to
open FAT file for writing.

Page 4 of 23 Version 0.1

Introduction

This project started out of necessity. I was in the process of building a 6800 based
clone of the SWTPC computer and needed a way to store programs. Vintage disk
controllers were hard to find on the internet and building an analog version was
more work than I wanted to take on.

Having done a lot of work with Arduinos, the obvious solution was to use one with
an SD shield, some software, and a simply parallel port on the 6800 side. This also
made the drive portable so it could be ported to the new 6809 board and eventually
to my KIM-1 and other vintage computer systems.

The original version was based on an Arduino UNO with a ATMega128 processor
but the limited RAM made the code messier as more features were added, so I finally
gave in and moved to an Arduino Mega.

While the current implementation is on a specific platform, there is nothing in the
protocol that requires any specific computer on either side of the connection.

The protocol allows for FAT file access as well as mounting DSK format files to act as
virtual disks for the host processor. There are very few commands implemented, so
users can certainly extend this with their own additions for specific hardware. One
of my goals is to add commands to read/write a real-time clock, as an example.

Copyrights

There are none. This specification was written by Bob Applegate of Corsham
Technologies, LLC, but there is no copyright. This document, the protocol, and the
implementation of it are open for anyone to use.

About all I ask is that if you use this, please give credit.

Terminology

Host The main processor in the system which is running
the disk operating system. This protocol is host
agnostic.

Disk Command
Processor (DCP)

The Arduino based system that is simulating disk
drives. This includes the hardware and software.

Command/Response The commands sent from the Host to the DCP and

Page 5 of 23 Version 0.1

codes (C/R) returned from the DCP back to the Host.

Page 6 of 23 Version 0.1

Overview

The protocol is very simple. The first byte is a command or response, and then zero
or more bytes follow with additional data needed by the command/response type.
There are no checksums, no error recovery except to try again, and only one
transaction may be in progress at any given time. That is, once a command is sent,
no other commands can be sent until the response is received.

The protocol does not define the transport mechanism, so it is certainly possible to
add error detection/retransmission into the wrapper protocol.

The host processor is in control of the bus; all transactions are initiated by the host,
never the drive emulator.

Some may question why there is no error detection/recovery at the protocol level,
but that’s really a lower-level function. The initial implementation using a parallel
interface works flawlessly so it was decided not to add more complication to the
protocol.

If someone were to implement this protocol over a serial interface or over
something more exotic like a UDP based system, then I would highly encourage
error checking and recovery at the transport protocol layer.

Page 7 of 23 Version 0.1

Parallel Interface

The protocol does not define the connection between the DCP and the host, but
since the current implementation uses a parallel interface, this is the description of
how it works.

There are eight data lines which change direction based on the direction of the
message. While sending a command the data lines are output from the host and
input from the DCP, and the direction changes for responses. As soon as a response
is done, the direction changes back.

There are also three flow control lines which never change direction. Two are
outputs from the host to the DCP and one is from the DCP to the host.

One of the control lines is a direction line. It is high when the host is in control of the
data lines and low when the DCP should be controlling them. The DCP should never
be transmitting if the direction line is high.

The other two control lines are identical except one is from the host and the other is
from the DCP. The sender of a byte must place the data onto the 8 data lines, then
raise the control line to indicate valid data is present. The other side then reads the
data and raises its control line to acknowledge the data. The sender pulls its control
line low, and the receiver then pulls its control line low. That completes the transfer
of one byte of data.

<< NEEDS EXAMPLE, SUCH AS A SINGLE TRANSFER DUMPED FROM THE LOGIC
ANALYZER >>

<< MAYBE A STATE DIAGRAM TOO >>

Page 8 of 23 Version 0.1

Commands/Responses Sorted by Numeric Value

While most values are either a Command or a Response, It is certainly possible they
can be both. Since the protocol is not symmetrical, the host expects only responses
while the DCP expects only commands.

Some values are reserved for Corsham Tech’s use, but any other values are free for
others to use. Entries link to the detailed protocol specification for that
command/response. If no link is provided, the command is not documented yet.

Value (hex) C/R Name

01 C GET_VERSION

02-04 Reserved (future time/date functions)

05 C PING

06 C LED_CONTROL

07 C GET_CLOCK

08 C SET_CLOCK

09-0F Reserved

10 C GET_DIRECTORY

11 C GET_MOUNTED LIST

12 C FILE_MOUNT

13 C FILE_UNMOUNT

14 C
WRITE_FILE

Command code: 1B
Valid responses: ACK, NAK
Frame:

Offset: 0 1-X X+1

Contents: 1B Filename 00

This will cause a new file to be created for
writing. This is followed by a sequence of
WRITE_BYTES commands to write the
contents of the file. The filename must
meet the requirements of the DCP and is
not defined here. At the end of the
filename is a null.

Note that only one file can be open at a
time. If another is opened while one is
already open, the results are undefined.

WRITE_BYTES

Page 9 of 23 Version 0.1

Command code: 1C
Valid responses: ACK, NAK
Frame:

Offset: 0 1 2-X

Contents: 1C Length Bytes

This is used to write data to a file that has
been opened with the WRITE_FILE
command. The length can be from 0 to
255; a value of 0 indicates 256 bytes. Ie, it
is not possible to write zero bytes. The
number of bytes specified are then sent.
The data is raw; whatever is included in
the message is exactly what will be
written to the disk file.

After all bytes have been sent, a
DONE/ABORT command is sent to close
the file.

GET_DRIVE_STATUS

15 C DONE/ABORT

16 C READ_FILE

17 C READ_BYTES

18 C READ_SECTOR

19 C WRITE_SECTOR

1A C GET_MAX_DRIVES

1B C WRITE_FILE

1C C WRITE_BYTES

1D-2F Reserved

30-7F Available

80 Reserved

81 R VERSION_INFO

82 R ACK

83 R NAK

84 Reserved

85 R PONG

86 Reserved

87 R CLOCK_DATA

88-8F Reserved

90 R DIRECTORY_ENTRY

91 R DIRECTORY_END

92 R FILE_DATA

Page 10 of 23 Version 0.1

93 R DRIVE_STATUS

94 R SECTOR_DATA

95 R MOUNT_INFO

96 R MAX_DRIVES – NOT DONE YET

97-AF Reserved

B0-FF Available

Commands/Responses Sorted by Function

Misc

Get version information
Ping/Pong
Setting LEDs

Mounting/Unmounting DSK Format Files

Mount
Unmounts
Status
List of mounted drives

Working with FAT Files

Request Directory
Next Directory Entry
Open File
Get Bytes from File

Working with Mounted Files

Sector Read
Sector Write
Status

Page 11 of 23 Version 0.1

Time/Date

Get current time/date
Set time/date

Page 12 of 23 Version 0.1

Common Values

Unless otherwise specified, numeric values are in hexadecimal.

Drive

The disk drive number is zero based. The highest value supported by a given
version of DCP is implementation dependent, but at least four drives (0 to 3) must
be supported.

Sector Size

Many commands allow the specification of sector size. This is always a one byte
field and only the following values are valid:

Value Actual size (decimal)

1 128

2 256

3 512

4 1024

Table 1

Another other value is undefined and the implementation of the DCP might choose a
default value.

Error Codes

A standard set of common error codes is specified:

Value (decimal) Error

00 No error

10 Drive not mounted

11 Drive already mounted

12 File not found

13 Read only

14 Illegal drive number

15 Illegal track number

16 Illegal sector number

17 Read error

18 Write error

19 Device not present

Page 13 of 23 Version 0.1

Table 2

Page 14 of 23 Version 0.1

Details of Commands/Responses

These are the more detailed explanations of the messages. The order is random;
mostly the order that I entered the data, cut and pasted, etc.

GET_VERSION

Command code: 01
Valid responses: VERSION_INFO
Frame:

Offset: 0

Contents: 01

The DCP must be able to provide some information about itself.

VERSION_INFO

Response code: 81
Frame:

Offset: 0 1-X

Contents: 81 Version

This is the response to a request for version information. It comes back as an ASCII
string. The first part is the manufacturer/developer of the DCP, ending with a
CR/LF sequence, followed by an ASCII version number, terminated with a 0 byte.

PING

Command code: 05
Valid responses: PONG
Frame:

Offset: 0

Contents: 05

Ping can be sent to the DCP which will reply with a Pong. This is a test message that
verifies communication to/from the DCP works and that the DCP is functioning.

PONG

Response code: 85
Frame:

Page 15 of 23 Version 0.1

Offset: 0

Contents: 85

This is the response to a Ping command and indicates the DCP got and processed the
Ping command.

LED_CONTROL

Command code: 06
Valid responses: None
Frame:

Offset: 0 1 2 3

Contents: 06 Bitmap Bitmap Bitmap

This command controls which LEDs on the DCP can be remotely controlled and can
also set them on or off.

The bitmap at offset 1 has a bit set for each LED that is controllable via the protocol.
If a bit is not set, then the LED is controlled by the DCP software.

The bitmap at offset 2 has a 1 bit for every bit to be modified by this command. If
only one LED is to be changed, only one bit will be set.

The bitmap at offset controls the setting of the LED(s) which have their bits set in
offset 2. If a bit is set, the LED is turned on.

Note that the map of LEDs in this command to actual LEDs on the board is undefined,
and there are no indications if the user attempts to control non-existent LEDs. By
default, no LEDs are under user control, so setting bits in offset 2 and 3 without
corresponding bits in offset 1 will make no changes to the LEDs.

DONE/ABORT

Command code: 15
Valid responses: No response sent
Frame:

Offset: 0

Contents: 15

This is a way to stop some commands from continuing to send data. It can be used
instead of READ_BYTES to abort the transfer of a long file.

Page 16 of 23 Version 0.1

READ_SECTOR

Command code: 18
Valid responses: SECTOR_DATA, NAK
Frame:

Offset: 0 1 2 3 4 5

Contents: 18 Drive Sector
size

Track Sector Sectors
per

track

Offset 1 is the zero-based drive number.

Offset 2 is the sector size. See Table 1.

Offset 3 is the zero based track number, or the high part of the sector number if
using sector-only numbering.

Offset 4 is the zero based sector number, or the low part of the sector number if
using sector-only numbering.

Offset 5 specifies the number of sectors per track. If the value is zero, then the track
and sector are treated as a zero-based 16 bit sector number with the high part in
offset 3 and the low part in offset 4.

The value at offset 5 can change between commands; some operating systems get
this value from a sector in track 0, then have it for future operations. For example,
FLEX has this at offset 27 (hex) in the System Information Record.

WRITE_SECTOR

Command code: 19
Valid responses: ACK, NAK
Frame:

Offset: 0 1 2 3 4 5 6-X

Contents: 19 Drive Sector
size

Track Sector Sectors
per

track

Data

Offset 1 is the zero-based drive number.

Offset 2 is the sector size. See Table 1.

Page 17 of 23 Version 0.1

Offset 3 is the zero based track number, or the high part of the sector number if
using sector-only numbering.

Offset 4 is the zero based sector number, or the low part of the sector number if
using sector-only numbering.

Offset 5 specifies the number of sectors per track. If the value is zero, then the track
and sector are treated as a zero-based 16 bit sector number with the high part in
offset 3 and the low part in offset 4.

The value at offset 5 can change between commands; some operating systems get
this value from a sector in track 0, then have it for future operations. For example,
FLEX has this at offset 27 (hex) in the System Information Record.

Starting at offset 6 is the data to be written. The number of bytes must match the
sector size.

ACK

Response code: 82
Frame:

Offset: 0

Contents: 82

This is a common response to indicate the last command was completed without
error.

NAK

Response code: 83
Frame:

Offset: 0 1

Contents: 83 Error Code

This response indicates the last operation encountered an error and may not have
completed. The error code values are in Table 2.

SECTOR_DATA

Response code: 94
Frame:

Offset: 0 1-X

Page 18 of 23 Version 0.1

Contents: 94 Data

This is in response to a sector read command. The data for the requested sector is
returned. There must be exactly the same number of bytes as are in the sector, as
the host will be expecting that exact number.

GET_DIRECTORY

Command code: 10
Valid responses: DIRECTORY_ENTRY, DIRECTORY_END
Frame:

Offset: 0

Contents: 10

This requests the directory for the current disk drive. Effectively, get a directory of
the FAT filesystem that is currently being used as a drive. This might be too closely
tied to FAT; someone might have a better idea for this. Also note that there is no
option to get a directory of any other drive… that logic seemed way too complicated.

DIRECTORY_ENTRY

Response code: 90
Frame:

Offset: 0 1-X X+1

Contents: 90 ASCII 00

This is a response to a request for a disk directory. Each file is returned one at a
time in a DIRECTORY_ENTRY response. The filename is in ASCII and is terminated
by a null.

Note that what is returned and in what format depends on the DCP. For the Arduino
code, only files in the current directory are returned, and they are all shortened to
8.1 format and all upper case.

DIRECTORY_END

Response code: 91
Frame:

Offset: 0

Contents: 91

Page 19 of 23 Version 0.1

This indicates the end of the directory entries. Note that this does not contain an
entry. It is also used to mark the end of a list of mounted drives.

READ_FILE

Command code: 16
Valid responses: ACK, NAK
Frame:

Offset: 0 1-X X+1

Contents: 16 Filename 00

This requests a specific file to be opened and made ready to read. This is followed
by a sequence of READ_BYTES commands to get the contents of the file. The
filename must meet the requirements of the DCP and is not defined here. At the end
of the filename is a null.

Note that only one file can be open at a time. If another is opened while one is
already open, the results are undefined.

READ_BYTES

Command code: 17
Valid responses: FILE_DATA
Frame:

Offset: 0 1

Contents: 17 Length

This requests bytes from an open file. The sender must specify the maximum
number of bytes that can be sent at a time.

FILE_DATA

Response code: 92
Frame:

Offset: 0 1 2-X

Contents: 92 Length data

This is sent with data from an open file. The length field specifies the number of
bytes in this message, or 0 if end of file has been reached.

Page 20 of 23 Version 0.1

WRITE_FILE

Command code: 1B
Valid responses: ACK, NAK
Frame:

Offset: 0 1-X X+1

Contents: 1B Filename 00

This will cause a new file to be created for writing. This is followed by a sequence of
WRITE_BYTES commands to write the contents of the file. The filename must meet
the requirements of the DCP and is not defined here. At the end of the filename is a
null.

Note that only one file can be open at a time. If another is opened while one is
already open, the results are undefined.

WRITE_BYTES

Command code: 1C
Valid responses: ACK, NAK
Frame:

Offset: 0 1 2-X

Contents: 1C Length Bytes

This is used to write data to a file that has been opened with the WRITE_FILE
command. The length can be from 0 to 255; a value of 0 indicates 256 bytes. Ie, it is
not possible to write zero bytes. The number of bytes specified are then sent. The
data is raw; whatever is included in the message is exactly what will be written to
the disk file.

After all bytes have been sent, a DONE/ABORT command is sent to close the file.

GET_DRIVE_STATUS

Command code: 14
Valid responses: DRIVE_STATUS
Frame:

Offset: 0 1

Contents: 14 Drive

Page 21 of 23 Version 0.1

This is meant as a way to simulate a DOS requesting the status of a disk drive as if it
were getting status from a disk controller chip.

DRIVE_STATUS

Response code: 93
Frame:

Offset: 0 1

Contents: 93 Status

The status field is a bitmap:

Bit Meaning when set

0 Drive is mounted (disk is present)

1 Read-only (clear indicates read/write)

GET_MOUNTED LIST

Command code: 11
Valid responses: MOUNT_INFO, DIRECTORY_END
Frame:

Offset: 0

Contents: 11

This requests a list of mounted drives. Each entry will be sent back in a
MOUNT_INFO message and after the last one, a DIR_END will be sent. Note that the
MOUNT_INFO messages will arrive one after another without the host needing to
request the next.

MOUNT_INFO

Response code: 95
Frame:

Offset: 0 1 2 3-X X+1

Contents: 95 Drive Read-only Filename 0

This record indicates a single mounted drive. The DCP should send a status for all
supported drives, not just mounted ones. In other words, in the DCP supports four
drives but none are mounted, four of these records should be returned, one per
drive, with no filename.

Page 22 of 23 Version 0.1

If Read-only is 0 then the drive can be written to. If non-zero then it is a read-only
drive.

FILE_MOUNT

Command code: 12
Valid responses: ACK, NAK
Frame:

Offset: 0 1 2 3-X X+1

Contents: 12 Drive Read-only Filename 0

This instructs the DCP to mount a specified file to a specified drive. If the drive is
already mounted or if the file does not exist, this will return an error.

Read-only can be either a 0 (drive can be written) or non-zero (drive cannot be
written to).

FILE_UNMOUNT

Command code: 13
Valid responses: ACK, NAK
Frame:

Offset: 0 1

Contents: 13 Drive

This tells the DCP to unmounts the filesystem immediately. If there are pending
writes, they must be performed first. If the drive is not mounted, then no error is
indicaed.

GET_CLOCK

Command code: 07
Valid responses: CLOCK_DATA, NAK
Frame:

Offset: 0

Contents: 07

This requests the current time/date from the hardware clock.

CLOCK_DATA

Response code: 87

Page 23 of 23 Version 0.1

Frame:

Offset: 0 1 2 3 4 5 6 7 8

Contents: 87 Month Day Year
high

Year
Low

Hour Min Sec DOW

This returns real-time clock data if a clock is available. Each field is a BCD (binary
coded decimal) version.

Month: 01-12. This is the true month, one based, in binary.

Day: 01-31, in binary.

Year: This is a four digit year. While most uses will never go back in time, a demo
system might want to pretend to be in the 1970s so the full year can be specified. If
the clock hardware does not support centuries, then the upper byte should be zero.

The hour is from 0 to 23, in binary.

Minutes and seconds are from 00 to 59, in binary.

The DOW (Day Of Week) value ranges from 0 (Sunday) to 6 (Saturday).

Note that if the clock hardware does not support any of these fields, a value of $FF
should be placed in that field to indicate it is not supported. Applications receiving
the clock data must allow for this.

SET_CLOCK

Command code: 08
Valid responses: ACK, NAK
Frame:

Offset: 0 1 2 3 4 5 6 7 8

Contents: 08 Month Day Year
high

Year
Low

Hour Min Sec DOW

This sets the clock. The data format is exactly as described for the CLOCK_DATA
message.

